

CONSTRUCTED WETLANDS FOR THE TREATMENT OF ORGANIC MICROPOLLUTANTS: LESSONS LEARNED ACROSS FIVE EXPERIMENTAL STUDIES

Pedro N. Carvalho, Yang Zhang, Tao Lv, Liang Zhang, Carlos Arias, Hans Brix

Department of Bioscience, Aarhus University, Denmark

pedro.carvalho@bios.au.dk

>CWs removal efficiency

TABLE 3. Minimum, Maximum (in Parentheses), and Average Concentrations of PPCPs in the Wastewater Influent for All Loading Rates and the Removal Efficiencies (Percent) Observed in the Vertical Flow Constructed Wetland (VFCW) and the Sand Filter (SF) at a Hydraulic Loading Rate of 70 mm Day⁻¹ and Working with either Unsaturated Water Flow or Saturated Flow^a

		unsaturated flow		saturated flow			
	influent ^{b, c} (µg L ⁻¹)	VFCW (% rem)	SF (% rem)	VFCW (% rem)	SF (% rem)	HFCW (<i>9</i>) (% rem)	WWTP (% rem)
Pharmaceuticals							
salicylic acid ibuprofen OH-ibuprofen CA-ibuprofen naproxen diclofenac carbamazepine	(45.7–72.3) 53.9 (8.3–17.2) 11.7 (12.4 – 16.9) 3.7 (8.7–12.4) 10.6 (0.96–2.15) 1.57 (0.48–1.28) 0.82 (1.24–2.9) 2.06 (25.2, 64.0) 48.4	$\begin{array}{c} 98 \pm 1 \\ 99 \pm 1 \\ 99 \pm 1 \\ 99 \pm 1 \\ 89 \pm 5 \\ 73 \pm 3 \\ 26 \pm 14 \\ 99 \pm 1 \end{array}$	98 ± 1 $90 \pm 3^{*d}$ $86 \pm 3^{*}$ $95 \pm 3^{*}$ 80 ± 5 76 ± 7 11 ± 7 98 ± 1	$egin{array}{c} 85 \pm 7 \ 555 \pm 1 \ 51 \pm 1 \ 71 \pm 6 \ 62 \pm 3 \ 53 \pm 2 \ 20 \pm 4 \ 82 \pm 1 \end{array}$	$\begin{array}{c} 77 \pm 7 \\ 49 \pm 1^{*} \\ 47 \pm 2^{*} \\ 68 \pm 8 \\ 66 \pm 7 \\ 39 \pm 22 \\ 8 \pm 15 \\ 75 \pm 6^{*} \end{array}$	96 71 62 87 85 15 16 (<i>35</i>) 97	99 (<i>3</i>) 60–70 (<i>33</i>)/ 90 (<i>1</i>) 95 (<i>34</i>) 95 (<i>34</i>) 40–55 (<i>33</i>)/66 (<i>1</i>) 9–75 (<i>1</i>)/17 (<i>23</i>) 8 (<i>23</i>)/7 (<i>1</i>) 99 (<i>22</i>)
Personal Care Products	(33.2 04.0) 40.4	55 ± 1	50 ± 1	02 ± 1	75±0	57	33 (23)
methyl-dihydrojasmonate hydrocinnamic acid oxybenzone	(18.8–31.8) 22.8 (11.2–17.6) 15.4 (8.58–22.1) 14.8 (2.05–12.4) 5.62	99 ± 1 99 ± 1 97 ± 1 90 ± 1	$98 \pm 1^{*}$ 99 ± 1 95 ± 2 92 ± 1	78 ± 4 82 ± 3 88 ± 3 88 ± 2	76 ± 8 69 ± 11 64 ± 24 88 ± 2	99 na ^e na	98 (<i>21</i>) na 68–99 (<i>36</i>) 70, 95 (<i>32</i>)/80 (<i>21</i>)
But: WWT a signi What	is the	fate	e of	the		mpc	ounds?
I What	oreth	ere	HUUC	\mathbf{VO}		ICES	Ses /

29 Septe

AIMS

- >investigate removal (efficiencies and dynamics) in subsurface CWs both on the water and plant phases
- > evaluate influencing factors on compound removal (initial concentration, CW configuration, plant type)
- > compare removal mechanisms
- > compare microbial metabolic functions

MODEL COMPOUNDS

Compounds	MW (g/mol)	рKа	Log K _{ow}	
Pesticides				
Imazalil (IMZ)	297	6.77	4.10	
Tebuconazole (TBU)	307	2.27	3.89	
Pharmaceuticals				
Ibuprofen (IBP)	206	4.85	3.79	
lohexol (IHE)	821	11.73	-4.16	

Typha latifolia

Phragmites australis

Iris pseudacorus

Berula erecta

Seasonality

CW design

Substrate sorption vs biofilm degradation

> Mesocosms reactors

> Artificial influent (nutrients + C)
 > 5 HLR; 5 plant species; 2 initial concentrations; season
 > 4 compounds

PHARMACEUTICALS

Interactions

 S^{T^*H}

5

2

S*T*C

5

16

S*H*C

22

0.5

 $T^{+}H^{+}C$

3

3

S*T*H*C

2

3

 H^*C

30

48

lohexol

PESTICIDES

Lv et al. Water Res., 2016, 91:126

Pesticides removal

shows positive correlation with

Evapotranspiration, TP removal TN, NH₄⁺-N removal, DO, oxygen SAT

- Plant effect
- Nitrifying bacteria

Microbial community analysis by Community-level physiological profiling – Biolog EcoPlates

BiOLOG EcoPlate[™]

Microbial Community Analysis

A1 Water	A2 β-Methyl-D- Glucoside	A3 D-Galactonic Acid T-Lactone	A4 L-Arginine	A1 Water	A2 β-Methyl-D- Glucoside	A3 D-Galactonic Acid †-Lactone	A4 L-Arginine	A1 Water	A2 β-Methyl-D- Glucoside	A3 D-Galactonic Acid 7-Lactone	A4 L-Arginine
B1 Pyruvic Acid Methyl Ester	B2 D-Xylose	B3 D- Galacturonic Acid	B4 L-Asparagine	B1 Pyruvic Acid Methyl Ester	B2 D-Xylose	B3 D- Galacturonic Acid	B4 L-Asparagine	B1 Pyruvic Acid Methyl Ester	B2 D-Xylose	B3 D- Galacturonic Acid	B4 L-Asparagine
C1 Tween 40	C2 I-Erythritol	C3 2-Hydroxy Benzoic Acid	C4 L- Phenylalanine	C1 Tween 40	C2 i-Erythritol	C3 2 Hydroxy Benzoic Acid	C4 L- Phenylalanine	C1 Tween 40	C2 i-Erythritol	C3 2-Hydroxy Benzoic Acid	C4 L- Phenylalanine
D1 Tween 80	D2 D-Mannitol	D3 4-Hydroxy Benzoic Acid	D4 L-Serine	D1 Tween 80	D2 D-Mannitol	D3 4-Hydroxy Benzoic Acid	D4 L-Serine	D1 Tween 80	D2 D-Mannitol	D3 4-Hydroxy Benzoic Acid	D4 L-Serine
E1 ac- Cyclodextrin	E2 N-Acetyl-D- Glucosamine	E3 7- Hydroxybutyric Acid	E4 L-Threonine	E1 Ør Cyclodextrin	E2 N-Acetyl-D- Glucosamine	E3 1- Hydroxybutyric Acid	E4 L-Threonine	E1 ®- Cyclodextrin	E2 N-Acetyl-D- Glucosamine	E3 7- Hydroxybutyric Acid	E4 L-Threonine
F1 Glycogen	F2 D- Glucosaminic Acid	F3 Itaconic Acid	F4 Glycyl-L- Glutamic Acid	F1 Glycogen	F2 D- Glucosaminic Acid	F3 Itaconic Acid	F4 Glycyl-L- Glutamic Acid	F1 Glycogen	F2 D- Glucosaminic Acid	F3 Itaconic Acid	F4 Glycyl-L- Glutamic Acid
G1 D-Cellobiose	G2 Glucose-1- Phosphate	G3 α-Ketobutyric Acid	G4 Phenylethyl- amine	G1 D-Cellobiose	G2 Glucose-1- Phosphate	G3 α-Ketobutyric Acid	G4 Phenylethyl- amine	G1 D-Cellobicse	G2 Glucose-1- Phosphate	G3 œ-Ketobutyric Acid	G4 Phenylethyl- amine
H1 α-D-Lactose	H2 D,L-α-Glycerol Phosphate	H3 D-Malic Acid	H4 Putrescine	H1 α-D-Lactose	H2 D,L-cc-Giycerol Phosphate	H3 D-Malic Acid	H4 Putrescine	H1 α-D-Lactose	H2 D,L-œ-Giycerol Phosphate	H3 D-Malic Acid	H4 Putrescine

FIGURE 1. Carbon Sources in EcoPlate

Tebucond zoperofen

29 September 201

TEBUCONAZOLE

Table 2

AARHUS

Lv et al. Water Res., 2017, 110:241

Fig. 8. Network analysis showing the correlation of water quality and substrate parameters and microbial community metrics for unsaturated ((a) interstitial water and (b) biofilm samples) and saturated ((c) interstitial water and (d) biofilm samples) constructed wetland mesocosms.

29 September 2017 Zhang et al. Sci Total Environ, 2017, 609:38

SUBSTRATE SORPTION TESTS

> Zeolite
> Polonite
> Petcoke
> Sand
> crushed autoclaved aera ted concrete (CAAC)
> Iron slags

Plant uptake?

Mass balance (24 d)

29 September 2017

Zhang et al. Environ. Sci. Pollut. Res. 2016, 23:2890 Lv et al. Chemosphere. 2016, 148:459

29 September 2017

CONCLUSIONS – SUBSURFACE FLOW SYSTEMS

- > Eco-technologies are also an effective solution to remove organic micropollutants from water
- > Sorption to substrate is a less relevant mechanism
- > Wetland plants can uptake and metabolise organic micropollutants
- > Removal is due to biodegradation: unclear yet the extent of plant and microbial degradation
- > Which microbial degradation pathways are more relevant? Can we enhance CECs removal by co-metabolisation?

Aarhus University - Department of Environmental Sciences

Kai Bester Monica Escola Ulla Bollmann

Royal Military College of Canada Kela Weber Mark Button

THANK YOU!

pedro.carvalho@bios.au.dk

29 September 2017