

Fate of sulfamethoxazole and its corresponding resistance genes in a continuous flow biofilm electrode reactor -microbial fuel cell coupled constructed wetlands system

Tutor : Hai-Liang Song Re

Reporter : Hua Li Date : 2017.8.22

FENTS

Research program

1

2

3 **Results and discussions**

1 Research background

Antibiotic

 NH_2 Targeted pollutant : Sulfamethoxazole (SMX) NH **Chemical equation :** $C_{10}H_{11}N_3O_3S$ **Log Kow :** 0.48 Adsorption coefficient: 0.6-31 SMX CNTV CCTV 13 CNTV 长江 人海口 检出 珠江 Incomplete 抗生素 黄네江 Treatment of metabolism 海河 辽河 disease Induces @广州日报 @央视新闻 Stimulation ARB&ARG growth **€€TV**/13 除了替加环素和黏菌 NDM-1细菌对其它抗生素都具有 亢药性 全球 航星素药物进入食物 超级细菌出现抗毒素时间消给家?

Antibiotic resistance genes

Target location : Emerging pollutants
Source : Antibiotic induce, Replication error of gene
Spread : Vertical transfer; horizontal transfer (including conjugative transfer, natural transformation and transduction)

Damage : A serious threat to human health and safety

Sewage treatment facilities

Sediment

Target resistance gene : *sul I*, *sul II*, *sul III*

Atmosphere

Conventional treatment technique

Physical method

- Antibiotic: Activate Carbon Adsorption Method、Sandfiltering and membrane filtration
- Resistance gene: sediment, filter and ultraviolet disinfection
- ✓ High-cost, Secondary pollutiom

Biological method

- Antibiotic: Activated sludge technique Constructed wetland
- Resistance gene: Activated sludge technique 、 Anaerobic digestion、 Constructed wetland
- Pollution-free, Low cost, High removal efficiency

Chemical method

- I chemical method: Coagulation precipitation method、Chemical oxidation technique
- Resistance gene: Lime stabilization method、Ozone and chlorine disinfection
- Intermediate products are poisonous, high costs
- Disinfection does not work for all ARGs

Microbial fuel cell-constructed wetland coupled with biofilm-electrode reactors (BER-MFC-CW)

BER-MFC-CW

2 Research program

Experiment device

- □ Plexiglass tub, diameter=15cm, Height=30cm。
- **Up-flow**
- Anode was graphite rod and cathode was stainless steel wire mesh

Biofilm electrode reactor (BER)

- **D** Diameter=19cm, Height=32cm
- **Up-flow**
- Activated carbon and stainless steel wire mesh are used as electrode materials.
- □ The wetlands are filled with gravel and planted with celery

Fig. Schematics of continuous flow BER -stacked CW-MFC system (1 water tank; 2 water inlet; 3 anode of CW-MFC; 4 cathode of CW-MFC; 5 wetland plants; 6 middle layer; 7 water outlet; 8 data acquisition module)

Phase 1

BER-CW- MFCOperating parameters

Reactor number	HRT	SMX (mg/L)	Power source		
BER 1	2.5d	2	Direct current		
BER 2	2.5d	2	powered by bioelectricity supplied by MFC-CW1, 2 in series		
BER 3	2.5d	4	Direct current		
BER 4	2.5d	4	powered by bioelectricity supplied by MFC-CW3, 4 in		
MFC-CW 1	2.5d	BER 1 effluent	- In series		
MFC-CW 2	2.5d	BER 2 effluent			
MFC-CW 3	2.5d	BER 3 effluent	– In series		
MFC-CW 4	2.5d	BER 4 effluent			

東南大學

Phase 2

BER-MFC-CW Operating parameters

Reactor number	HRT	SMX (mg/L)	Power source
BER 1	16h	4	powered by bioelectricity supplied by MFC-CW1, 2 in series
BER 2	8h	4	powered by bioelectricity supplied by MFC-CW3,4 in series
BER 3	4h	4	powered by bioelectricity supplied by MFC-CW5,6in series
MFC-CW 1 MFC-CW 2	32h	BER 1effluent	
MFC-CW 3 MFC-CW 4	16h	BER 2effluent	
MFC-CW 5 MFC-CW 6	8h	BER 3effluent	

3 Research results and discussions

BER-MFC-CW removal of antibiotics and simultaneous production of electricity

The electrical performance of MFC-CW increased with the increase of SMX concentration and decreased with longer running time

The power performance of MFC-CW increases with the decrease of HRT

01 研究背景 / 02 研究方案 / 03 研究内容与讨论 / 04 结论与建议 BER-MFC-CW removal of antibiotics and simultaneous production of electricity

SMX concentration of BER-MFC-CW under different SMX concentrations

7.15 (30d)							
		Influent SMX (µg/L)	Effluent SMX (µg/L)	Removal efficiency (%)	Total removal efficiency (%)		
BER-MFC-CW 1 (General composite system)	BER1 MFC-CW1	2000 285.4±23.1	285.4±23.1 14.2±2.8	85.73±1.16 95.02±0.98	99.29±0.14		
BER-MFC-CW 2 (Coupled system of matter and energy)	BER2 MFC-CW2	2000 207.9±21.7	207.9±21.7 12.1±2.1	89.61±1.09 94.10±1.01	99.39±0.11		
BER-MFC-CW 3 (General composite system)	BER3 MFC-CW3	4000 423.3±39.4	423.3±39.4 23.1±5.3	89.42±0.99 94.54±1.25	99.42±0.13		
BER-MFC-CW 4 (Coupled system of matter and energy	BER4 MFC-CW4	4000 382.4±37.5	382.4±37.5 25.8±4.9	90.44±0.94 93.25±1.28	99.35±0.12		

- The total removal rate of SMX was as high as 99%
- BER removal rate of SMX was up to 90%.
- MFC-CW removal
 rate of SMX was up to
 95%.
- The removal effect of SMX on the coupling system is slightly higher than that of the composite system

BER-MFC-CW removal of antibiotics and simultaneous production of electricity

SMX concentration of BER-MFC-CW under different HRT

			Oct 15th			
		HRT	Influent SMX (µg/L)	Effluent SMX (µg/L)	Unit removal rate (%)	Total removal rate (%)
BER-MFC-CW 1	BER1	16h	4000	954.3±73.8	75.00 ± 1.84	
Coupled system of	MFC-CW1, 2	32h	954.3±73.8	90.3±13.1	90.54 \pm 1.37	97.74 ± 0.33
matter and energy						
BER-MFC-CW 2	BER2	8h	4000	1507.7±123.1	62.50 ± 3.08	
Coupled system of	MFC-CW3, 4	16h	1507.7 ± 123.1	94.7±13.9	93.72±0.92	97.63 ± 0.35
matter and energy						
BER-MFC-CW 3	BER3	4h	4000	2140.5±243.5	48.00 ± 6.09	
Coupled system of	MFC-CW5, 6	8h	2140.5 ± 243.5	98.2±15.2	95.33 ± 0.71	97.54 ± 0.38
matter and energy						

▶ 1The total removal rate of SMX in BER-MFC-CW system is as high as 97%.2With the decrease of HRT, the removal rate of SMX decreased slightly. The removal rate of SMX by BER decreased with HRT.

The removal rate of antibiotics in MFC-CW in different layer

 Antibiotics are mainly removed in the anodic layer. Removal efficiency was about 42-55%.

東南大學

Characteristics of resistant genes in BER-MFC-CW effluent

value

Maximum

Minimum value

Absolute abundance: Logarithm of absolute copy number of resistant genes in 1ml water

30d sulIII 60d sulIII 30d *sul1* 60d *sull* 30d *sulII* 60d *sulII* 30d 16S 60d 16S 3.62 3.06 7.63 7.07 BER1 2mg/L3.14 7.52 7.24 2mg/LBER2 3.41 4.00 7.99 6.87 6.64 6.79 4.24 7.75 4 mg/LBER3 3.94 3.75 7.78 7.58 4mg/L BER4 2.35 2.46 6.62 MFC-CW1 2.20 2.12 MFC-CW2 7.13 3.05 2.98 7.07 MFC-CW3 2.89 2.85 7.02 MFC-CW4 6.97

Effect of SMX concentration on absolute abundance of resistant genes

- ✓ sull>sulII>sulIII; BER>CW-MFC
- ✓ 4mg/L was 0,6-0.8 orders of magnitude higher than 2mg/L group.
- \checkmark The absolute abundance of <u>sul</u> genes and bacteria decreases with time
- ✓ Influent (no sul gene) —the effluent of BER (produce sul gene) —effluent of MFC-CW (Sulfonamide gene reduction)
- ✓ MFC-CW had a 1-1.3 order of magnitude removal of the two Sul genes and a 0.76-1.01 order of magnitude removal for bacteria at 30 d.

Characteristics of resistant genes in BER-MFC-CW effluent

alue

The influence of HRT on absolute abundance of resistance genes

	_	sulI	sulII	sulIII	16S	u A8
HRT=16h	BER1			3.31	7.05	imu
HRT=8h	BER2			3.71	7.12	Maximum
HRT=4h	BER3	6.34	6.21	3.92	7.21	
	MFC-CW1, 2	5.18	5.03	2.49	6.53	value
	MFC-CW3, 4		5.26	2.73	6.64	
	MFC-CW5, 6			3.10	6.97	inimum

- The absolute abundance of *sul* gene in BER and MFC-CW effluent increased with the decrease of HRT
- MFC-CW had a 0.5-1 order of magnitude removal of the three *sul* genes and a 0.25-0.54 order of magnitude removal for bacteria
- With the decrease of HRT, the removal ability of MFC-CW to *sul* gene also decreased

Characteristics of resistant genes in BER-MFC-CW effluent

Effect of SMX concentration on relative abundance of resistant genes

Characteristics of resistant genes in BER-MFC-CW effluent

The influence of HRT on relative abundance of resistance genes

