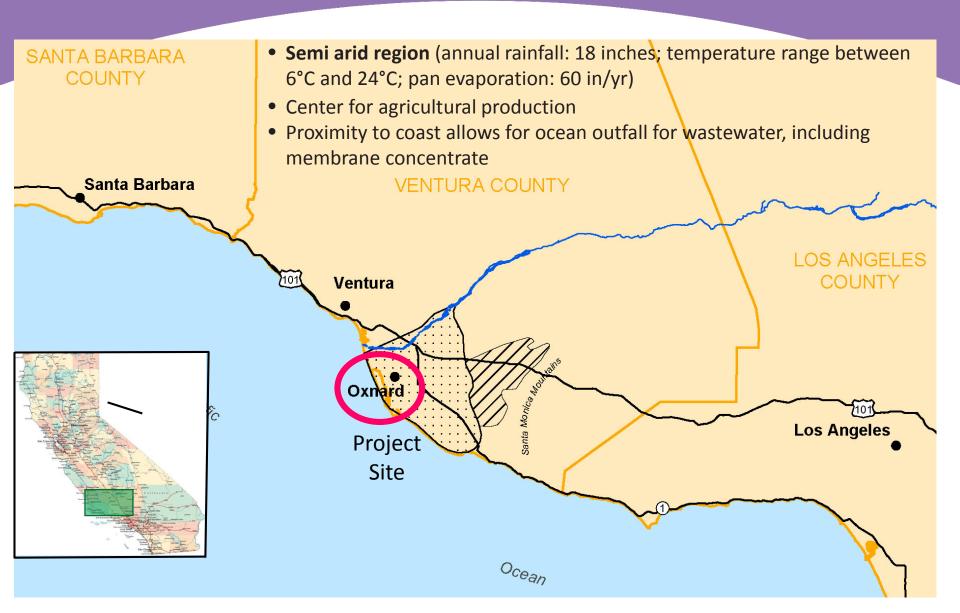
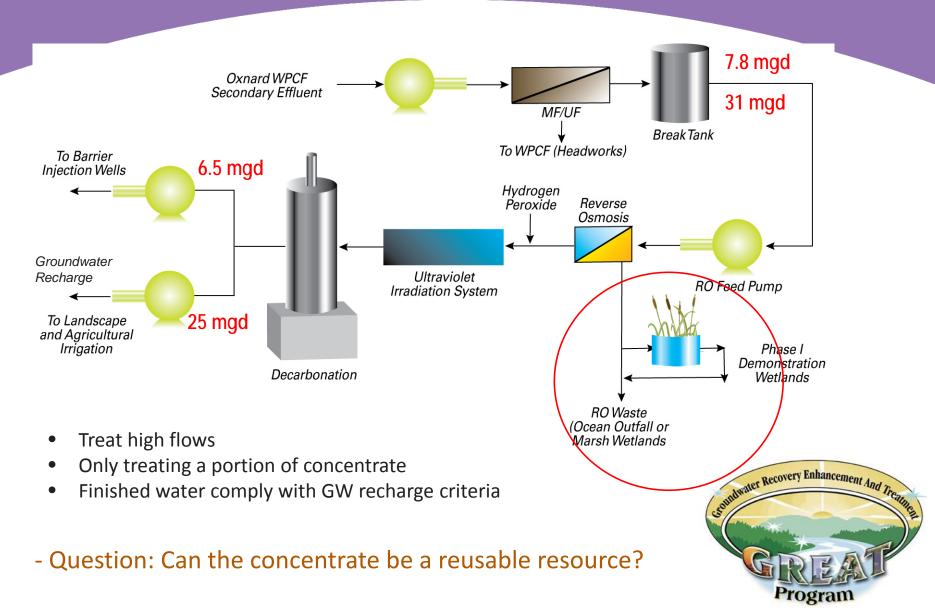
Performance of a subsurface flow pilot wetland for treating high concentrations of nitrogen, phosphorus and carbon

Rajat K. Chakraborti and James S. Bays; CH2M


7th International WETPOL Symposium Big Sky, Montana, USA August 21-25, 2017 August 25, 2017


- Background
- Wetlands for concentrate management
- Pilot study description
- Results
 - Removal efficiency of nutrients
 - Mass balance of Nitrogen
- Conclusions

Oxnard: A Coastal Community in Southern California is Building Needed Future Water Supply Capacity

Oxnard AWPF Process Includes Wetlands Treatment of Concentrate Sidestream

Ę

Oxnard Previously Established Feasibility of Treating Groundwater Concentrate Using Wetlands

• Surface flow high marsh (SFHM), • Peat-based vertical upflow (VF),	This study		GREAT program	
 Surface flow low marsh (SFLM), Horizontal subsurface flow (SSF), Saltgrass evaporation bed (SE). 	Brackish Water		RO Concentrate	
THE FEI HATT	TDS: 2 - 5 g	g/L	TDS:	12-15 g/L
	NH ₃ -N: 0.1 mg/L	- 0.5	NH ₃ - mg/l	N: 100 – 150 -
	NO ₃ -N: 30- mg/L	-50	NO ₃ - mg/l	N: 20 - 40 -
	Se: 20 – 30) μg/L	Se: 3	0 – 60 μg/L
6 types				
∠ √ 3 years				
Metals, nutrients	Parameter	neter Seconda Effluent (mg/L)		RO Concentrate (mg/L)
✓ Toxicity reduction	TDS	1,750		11,833
✓ Volume reduction	NO ₃ -N	1.2		14
	TN	25.9		170

NH₃-N

TOC

22.2

16.6

121.7

72.3

To gain confidence in the performance of wetlands, *another pilot study* was needed before design of the full scale plant.

Ē

The AWPF Will Treat Higher Strength Concentrate: A Bridging Study Was Needed to Confirm Results

TITLE

AWPF Layout

Three Types of Treatment Wetlands (1.2 Acre):

- *Subsurface horizontal flow* for *ammonia* removal (aeration, recirculation, nitrification of NH4)
- Anaerobic subsurface upflow reactors for metals reduction (bacterial reduction for NO3, Se)
- Free water surface wetlands for habitat and nutrient removal (denitrification, contaminant polishing)

- Demonstration wetlands adjacent to the visitor center; water needs to "good neighbor"

A Pilot Study was Needed to Bridge the Gap between Concentrate Strengths

Objectives

- 1. Confirm the survival and growth of brackish marsh plants receiving the RO concentrate
- Confirm that the aesthetics of the treatment wetland would be acceptable (i.e., no offensive odors or colors would be generated)
- 3. Assess the pollutant removal performance of wetlands treating the RO concentrate

Trailer- Mounted Pilot Wetland Co-Located with RO Pilot System at WWTP

L = 3.7 m

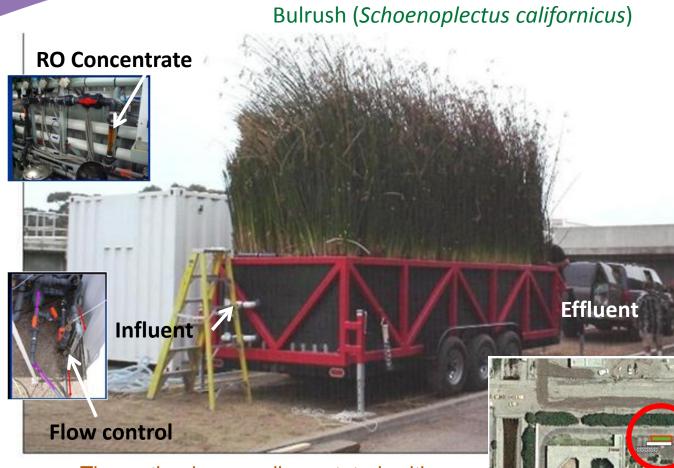
W = 2.4 m

D = 1.3 m

 $A = 8.9 \text{ m}^2$

 $V = 11.9 \text{ m}^3$

Wetland


Tustin, CA

Portable Subsurface

Mobile Environmental

Flow Constructed

Solutions (MES),

- The wetland was well vegetated, with some open water; Unique setup
- Flow rate adjustable

Hydraulic Data Summary

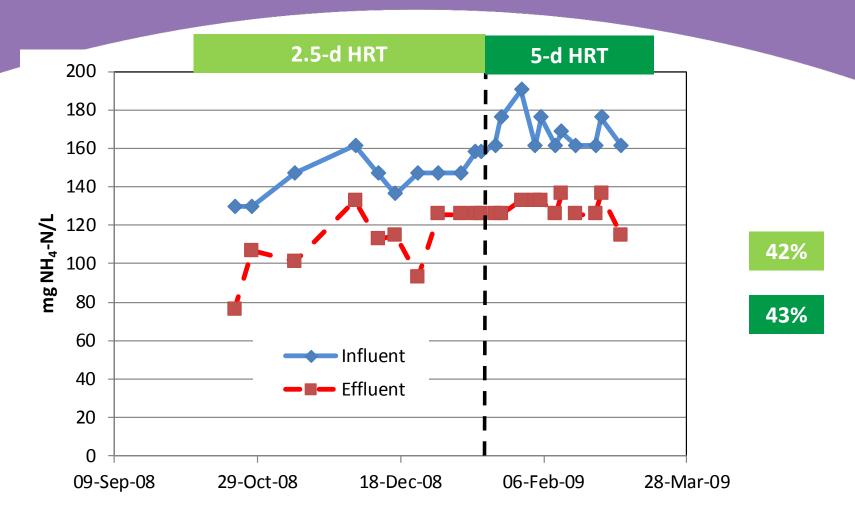
Ę

Dates	Sampling duration (day)	Flows (L/min)	HRT (day)	HLR (cm/day)	Comments
9/1/2008 - 9/24/2008	23	1.9	1.3	24.5	Initial Acclimation Period; no sampling
10/1/2008 - 1/19/2009	110	1	2.5	12.9	Sampling period 1
1/20/2009 - 3/5/2009	40	0.5	5	6.5	Sampling period 2

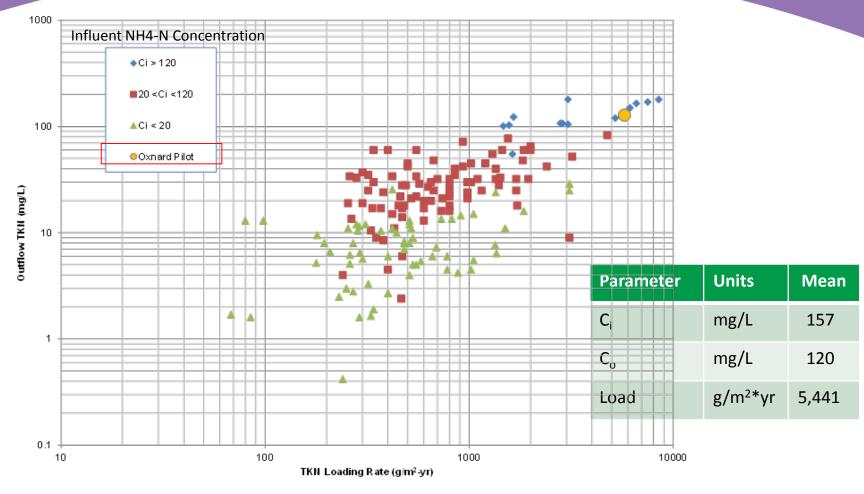
HLR = Hydraulic Loading Rate HRT = Hydraulic Residence Time

- These are relatively higher HLRs and shorter HRTs than most wetlands

Normal, Vigorous Plant Growth and Survival


Before (T = 0, August 2008)

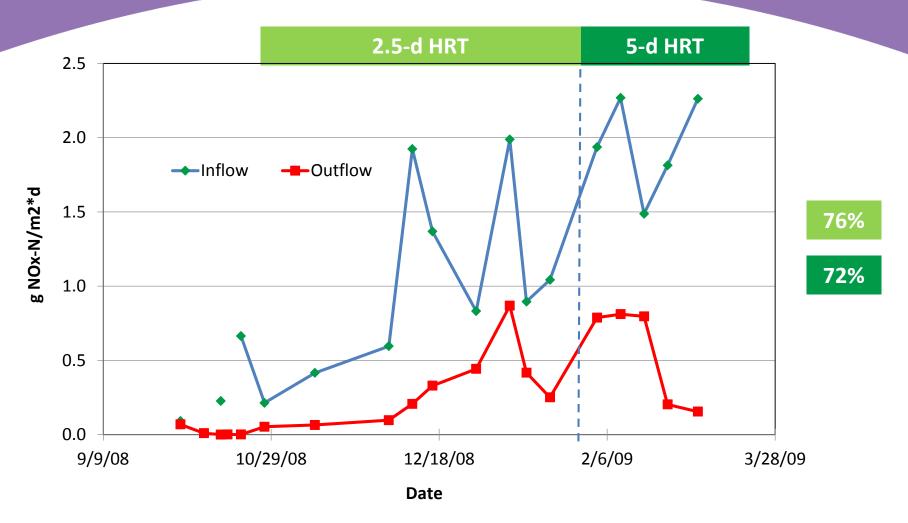
After (T = 7 Months, March 2009)


- Plant response shows no adverse effects due to high salt content

Ammonium Mass Reduction: 42%

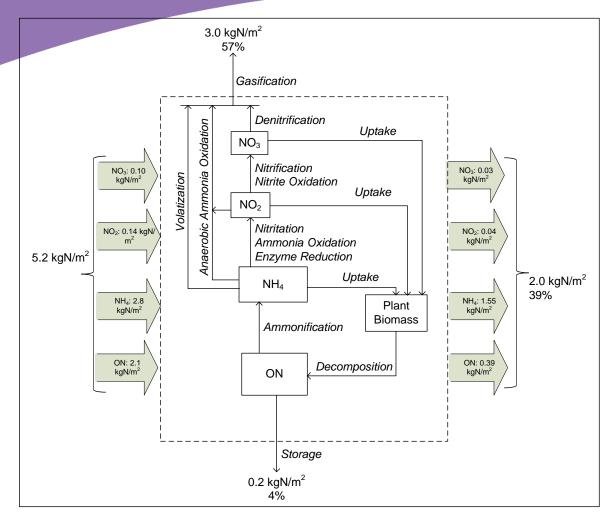
- Consistent reduction impact of HRT is negligible
- High strength loading from reclaimed water is unusual for wetlands
- Uptake and nitrification in soil root zone

Consistent Loading Response Position of the Oxnard AWPF Pilot Indicates Similarity to Global Data Set: Ammonia-N


• The dominant removal processes are microbial, not plants

Source: Kadlec & Wallace 2009

Ē


• Sufficient oxygen is required to achieve full nitrification

Oxidized Nitrogen (NOx-N) Mass Reduction: 75% (Nitrite-N + Nitrate-N)

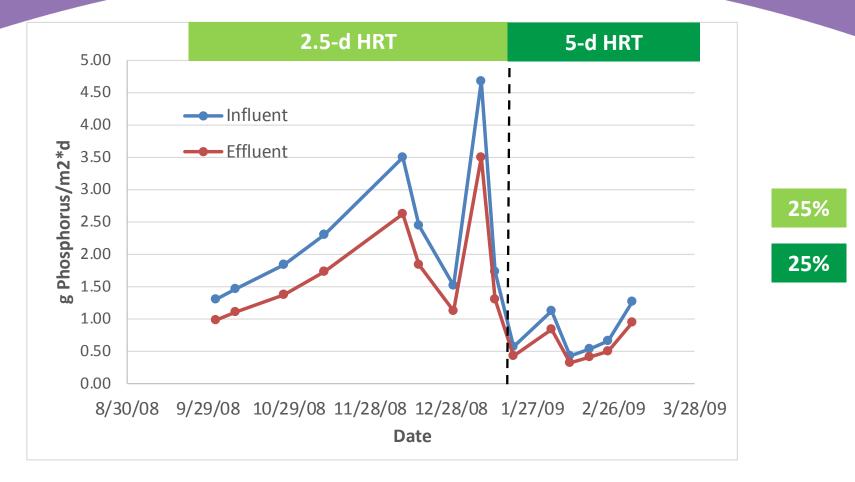
- Not enough oxygen to complete transformation of nitrite to nitrate

Nitrogen Mass Balance Analysis (6 months)

Processes:

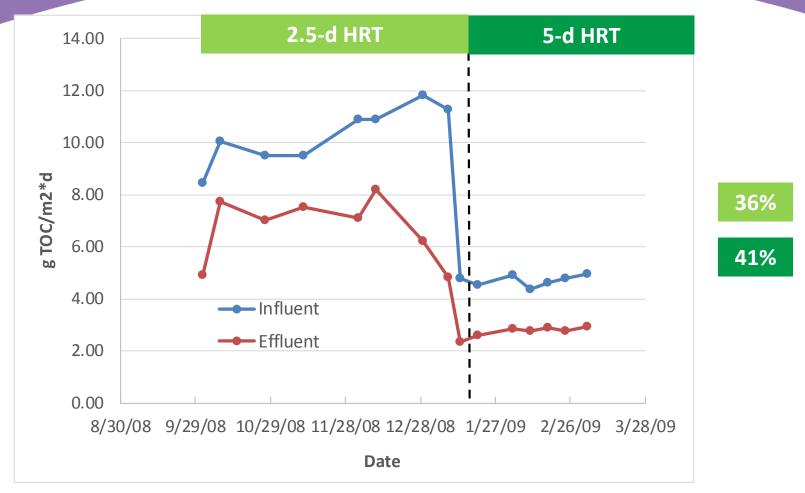
- Particulate **settling** and resuspension
- Diffusion of dissolved forms
- Plant translocation,
- Litterfall
- Ammonia (un-ionized)
 volatilization (gasification)
- Anaerobic ammonia oxidation (Anamox)
- Sorption of soluble nitrogen on substrates (detritus and sediment)

Major Transformation Processes:


- Ammonification (mineralization)
- Nitrification
- Denitrification (carbon dependent)
- Assimilation
- Decomposition

Inflow: NH_4 : 54% of load; ON: 41% of loadOutflow: NH_4 : 77% of load; ON: 20% of load

Removed TN: 61% of load


Microbial metabolism dominates transformation

Total Phosphorus Mass Reduction: 25%

- Mass reduction is consistent – impact of HRT is negligible

TOC Mass Reduction: 37%

- Slight reduction due to metabolism of labile carbon but leaving residual carbon
- Reduction is consistent with denitrification

Conclusions

- Plants tolerated the high levels of salts and nutrients
 - TDS ranged between 15-25 g/L
- No odor detectable from the RO concentrate influent
- Mass balance of nutrients shows distribution of mass in soil, water, air and outflow
- Reduction in nitrogen concentration and mass
- Treatment performance consistent with wetland database
- Doubled residence time did not produce significantly better performance
- Wetlands technology can support healthy ecosystems, recreation, reduce concentrate volume, and polish effluent and reduce concentration of pollutants

AWPF Demonstration Wetland Unit Process Construction

Visitor center and wetlands

- No concentrate available
- Currently, monitored by Bureau of Reclamation

Wetlands after planting

We would like to thank:

- Jeff Miller City of Oxnard/Wastewater Division
- Mark Moise City of Oxnard/Wastewater Division
- Thien Ng City of Oxnard/Wastewater Division
- Anthony Emmert City of Oxnard/Engineering Department
- Lou Balderrama City of Oxnard/Wastewater Division
- Terry Kirsch City of Oxnard/Wastewater Division
- Paul Morris Pall Corporation
- Allan Wright Membrane Systems
- Kathy McKinley CH2M/Corvallis Laboratory
- Dr. Stephen Lyon Mobile Environmental Solutions (MES)
- Mainstreet Architects and Planners